Boosted multi-class semi-supervised learning for human action recognition

نویسندگان

  • Tianzhu Zhang
  • Si Liu
  • Changsheng Xu
  • Hanqing Lu
چکیده

Human action recognition is a challenging task due to significant intra-class variations, occlusion, and background clutter. Most of the existing work use the action models based on statistic learning algorithms for classification. To achieve good performance on recognition, a large amount of the labeled samples are therefore required to train the sophisticated action models. However, collecting labeled samples is labor-intensive. To tackle this problem, we propose a boosted multi-class semisupervised learning algorithm in which the co-EM algorithm is adopted to leverage the information from unlabeled data. Three key issues are addressed in this paper. Firstly, we formulate the action recognition in a multi-class semi-supervised learning problem to deal with the insufficient labeled data and high computational expense. Secondly, boosted co-EM is employed for the semi-supervised model construction. To overcome the high dimensional feature space, weighted multiple discriminant analysis (WMDA) is used to project the features into low dimensional subspaces in which the Gaussian mixture models (GMM) are trained and boosting scheme is used to integrate the subspace models. Thirdly, we present the upper bound of the training error in multi-class framework, which is able to guide the novel classifier construction. In theory, the proposed solution is proved to minimize this upper error bound. Experimental results have shown good performance on public datasets. Crown Copyright & 2010 Published by Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-supervised subclass support vector data description for image and video classification

In this paper, an One-Class Classification method, namely the Semi-Supervised Subclass Support Vector Data Description, is presented. The proposed method extends Support Vector Data Description by two means, i.e. by exploiting global class information expressed by the class data variance and local neighborhood information between all available (labeled and unlabeled), following the smoothness a...

متن کامل

Semi-supervised Learning Using Local Regularizer and Unit Circle Class Label Representation

Semi-supervised learning, which aims to learn from partially labeled data and mostly unlabeled data, has been attracted more and more attention in machine learning and pattern recognition. A novel semi-supervised classification approach is proposed, which can not only handle semi-supervised binary classification problem but also deal with semi-supervised multi-class classification problem. The ...

متن کامل

Semi-supervised Facial Expression Recognition Algorithm on The Condition of Multi-pose

A major challenge in pattern recognition is labeling of large numbers of samples. This problem has been solved by extending supervised learning to semi-supervised learning. Thus semi-supervised learning has become one of the most important methods on the research of facial expression recognition. Frontal and un-occluded face images have been well recognized using traditional facial expression r...

متن کامل

Semi-supervised Bayesian Deep Multi-modal Emotion Recognition

In emotion recognition, it is difficult to recognize human’s emotional states using just a single modality. Besides, the annotation of physiological emotional data is particularly expensive. These two aspects make the building of effective emotion recognition model challenging. In this paper, we first build a multi-view deep generative model to simulate the generative process of multi-modality ...

متن کامل

Experimental Comparisons of Semi-Supervised

We present a series of experimental results that reveal the merits of the semi-supervised learning when applied to two different types of ART architectures (Fuzzy ARTMAP and Ellipsoidal ARTMAP). The concept of semi-supervised learning (SSL) was first introduced in the Simplified Boosted ARTMAP architecture by Verzi, et al., 2002, and was extended to Boosted Ellipsoidal ARTMAP by Anagnostopoulos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2011